Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) with first-principles kinetic Monte Carlo.
نویسندگان
چکیده
Microkinetic modeling of surface chemical reactions still relies heavily on the mean-field based rate equation approach. This approach is expected to be most accurate for systems without appreciable lateral interactions among the adsorbed chemicals, and there in particular for the uniform adlayers resulting in poisoned regimes with predominant coverage of one species. Using first-principles kinetic Monte Carlo simulations and the CO oxidation at RuO(2)(110) as a showcase, we demonstrate that even in this limit mean-field rate equations fail to predict the catalytic activity by orders of magnitude. This deficiency is traced back to the inability to account for the vacancy pair formation that is kinetically driven by the ongoing reactions.
منابع مشابه
Effect of surface nanostructure on temperature programmed reaction spectroscopy: first-principles kinetic monte Carlo simulations of CO oxidation at RuO2(110).
Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ first-principles kinetic Monte Carlo simulations to illustrate the intricate effects on temperature programmed reaction spectroscopy data brought about by the mere correlations between the locations of the active sites at a nanostructured surface. Even in the absence of lateral interactions, this nanostructure alone can caus...
متن کاملRationalizing the Relation between Adlayer Structure and Observed Kinetics in Catalysis
Relating the kinetic behavior of catalytic reactions with adsorbate overlayer structure is a long-standing challenge in catalysis. Even for simple systems such as CO oxidation on Pd(111), recent studies have observed rich behavior. In particular, titration experiments by Kondoh and coworkers on this system (J. Chem. Phys. 2006, 124, 224712), demonstrated firstorder reaction kinetics with respec...
متن کاملFirst-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Application to the CO oxidation at RuO2„110..
We describe a first-principles statistical mechanics approach enabling us to simulate the steady-state situation of heterogeneous catalysis. In a first step, density-functional theory together with transition-state theory is employed to obtain the energetics of the relevant elementary processes. Subsequently the statistical mechanics problem is solved by the kinetic Monte Carlo method, which ac...
متن کاملSolving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model
In multiscale models of heterogeneous catalysis, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. This usually is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct sol...
متن کاملCO Oxidation on Pd(111): A First-Principles-Based Kinetic Monte Carlo Study
CO oxidation on O-precovered Pd(111) surfaces exhibits remarkably different reactivities at different temperatures, which correlate with structural changes in the atomic O overlayer. Stoichiometric titration experiments by Nakai et al. (J. Chem. Phys. 2006, 124, 224712) show that although the p(2 × 2) ordered phase is inert, the (√3 × √3) and p(2 × 1) phases that form at 320 and 190 K, respecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 134 6 شماره
صفحات -
تاریخ انتشار 2011